报告标题:Nonlocal Fisher-KPP free boundary problem with a non-symmetric kernel
报告人:房祥东(大连理工大学 副教授)
报告摘要:We investigate the principal eigenvalue \(\lambda_p\) of a nonlocal diffusion operator \(\mathcal{L}_{(-l,l)}^{J,c}\) with a general non-symmetric kernel \(J(x)\), establishing its asymptotic limit as the interval length \(l\) tends to infinity. This result is then applied to analyze the propagation dynamics of both Cauchy and free boundary problems with KPP nonlinearity. For non-symmetric kernels, we demonstrate asymmetric spreading speeds \(c^-\) and \(c^+\) that govern propagation dynamics. While the weakly non-symmetric case \((c_*^- < 0 < c_*^+)\) shows similarities to symmetric kernels, the strongly non-symmetric cases \((0 \leq c_*^- < c_*^+ and c_*^- < c_*^+ \leq 0)\) exhibit fundamentally different behaviors, requiring novel analytical approaches.
报告时间:2025年9月20日 (周六) 上午9:00-10:00
报告地点:第7教研楼南105
报告人简介:房祥东,大连理工大学数学科学学院副教授,2011年至2012年赴瑞典斯德哥尔摩大学数学系访学,2024年至2025年赴澳大利亚新英格兰大学数学系访学,主要研究方向为非线性泛函分析、变分法、薛定谔方程的奇异扰动问题及非局部Fisher-KPP问题的传播动力学,在Calculus of Variations and Partial Differential Equations, Journal of Differential equations, Communications in Contemporary Mathematics, Zeitschrift fur Angewandte Mathematik und Physik等国际知名刊物上发表多篇学术论文。
邀请人:刘美淇