2025年4月25日吴钢教授学术报告

发布者:颜晓丽发布时间:2025-04-23浏览次数:10

报告题目:Two Accelerated Non-backtracking PageRank Algorithms for Large-scale Networks

报告时间:2025425日  15:00-16:00

报告地点:6教南楼 528

摘要:Non-backtracking PageRank is a variation of Google’s PageRank, which is based on non-backtracking random walk. However, if the number of dangling nodes of a graph is large, the non-backtracking PageRank algorithm may suffer from huge memory requirements and heavy computational costs.  In this talk, the authors first consider how to compute the non-backtracking PageRank vector efficiently by using the Jacobi iteration, and then propose two strategies to speed up the computation of non-backtracking PageRank, in which we add some edges to a graph in a randomized and a fixed way, respectively. The advantages of the proposed algorithms are two-fold. First, the sizes of the matrix computation problems are much smaller than that of the original one. Second, there is no kronecker product in the involved non-backtracking edge matrices, and the structures of the non-backtracking PageRank problems are greatly simplified.

报告人简介:吴钢,中国矿业大学数学学院教授、博士生导师;江苏省“333工程”中青年科学技术带头人,江苏省“青蓝工程”中青年学术带头人,江苏省计算数学学会副理事长。主要研究方向:数值代数、数据科学中的大规模矩阵计算;数据挖掘与统计计算;大数据相关快速算法与理论;机器学习中的快速算法与优化;人工智能的数学理论与快速算法;先后主持国家自然科学基金项目、江苏省省自然科学基金项目多项,已在国际知名杂志,如:SIAM Journal on Numerical Analysis, SIAM Journal on Matrix Analysis and Applications, SIAM Journal on Scientific Computing, IMA Journal of Numerical Analysis, Pattern Recognition, Machine Learning等期刊发表学术论文多篇。


联系我们
地址:杭州市杭州经济开发区白杨街道2号大街1158号
电话:
邮箱:
Copyright © All Rights Reserved 中国・浙江・杭州 浙ICP备12028388号-2.浙公网安备34030002000595号